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Abstract

Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple
cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli
are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant
lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis
and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM).
Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many
pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their
extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults
like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or
accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including
chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated
causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions.
Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections.
Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory
infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling
functions during homeostasis and during some of the most commonly observed pulmonary diseases.
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Introduction
The lung is seldom considered a lipid metabolic organ.
However, it does sustain active lipid metabolism, espe-
cially in the alveolar area, where surfactant homeostasis
is exquisitely regulated to ensure continuous optimal
function in each respiration cycle. Surfactant is a lipo-
protein complex, composed mostly of phospholipid, and
it is an absolute requirement for gas exchange. It has
been known for a long time that the cause of infant
respiratory distress syndrome (IRDS) and death of pre-
mature infants is surfactant insufficiency, and exogenous
therapy is nowadays a standard of care in these cases

(Table 1). Both animal derived and synthetic surfactants
provide clinical benefits and decrease mortality of preterm
infants with IRDS. For expanding on the lipid pathology
of IRDS, the reader is referred to the existing revisions in
the literature ([1] and references herein).
Beyond their essential roles as surfactant, energy stor-

age and structural components, different lipids can also
exert different signaling functions during physiological
and pathophysiological processes. In the lung, lipids
were intensely studied in the context of surfactant me-
tabolism during the second half of the twentieth century
and are now garnering new interest in multiple disease
contexts, partly owing to the latest development of
sophisticated and sensitive methods for detection and
data analysis. Currently ongoing research on pulmonary
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fibrosis and electronic cigarette-induced lung injury
highlights the relevance of pulmonary lipids during
disease.
In this review, we focus on adult pulmonary disease

to give a consolidated view of the most updated lit-
erature on alveolar lipids. Reviewing the roles of all
lipid species in all pulmonary cell types in every form

of disease would be excessively lengthy and exceed
our scope. Instead, this paper is focused on the alveo-
lar area, which is the most studied and where the
major pulmonary lipid metabolic cells reside. How-
ever, we are convinced that lipid metabolism will re-
veal itself of interest in any other lung region and cell
type considered.

Table 1 Overview of lipid changes in common pulmonary conditions

Pulmonary Condition Lipid Process Reference

Infant Respiratory Distress Syndrome (IRDS) Surfactant Insufficiency [1, 65, 74, 208, 225, 227, 232, 233, 235, 239, 240, 244, 245
]

Acute Respiratory Distress Syndrome (ARDS/
RDS)

Neutral Lipid Accumulation [51]

Surfactant Lipid Deficiency [27, 67–69, 247, 248]

Increased PL-Mediated Fibrin Polymerization [247]

Protective Role of Sphingolipid Signaling [249–251]

Acute Lung Injury (ALI) T2C Damage [134, 252, 253]

Surfactant Lipid Alterations [134, 242, 252, 253]

Dysregulated Lipid Transport [177, 178]

Protective Role of Sphingolipid Signaling [249–251]

Chronic Obstructive Pulmonary Disease
(COPD)

Surfactant Lipid Deficiency [6, 7, 67, 88–91, 95, 98–104]

Disrupted Reverse Lipid Transport [105, 106]

T2C Damage [92–98, 103, 107, 108]

Disrupted Alveolar Architecture [104]

Impaired AM Sphingolipid Signaling [110–113]

Vaping-Associated Lung Injury Intracellular and Luminal Lipid Accumulation [115–120, 194, 195]

Dysregulated AM Lipid Metabolism [196]

Idiopathic Pulmonary Fibrosis (IPF) Surfactant Lipid Alterations [67, 129–134, 139–141, 143–145, 148]

Downregulated T2C Lipid Metabolism [125–128, 139–141, 148, 150]

T2C ER Stress [147–149, 151]

T2C Damage [135–137]

Dysregulated AM Lipid Metabolism [130, 138, 142]

Dysregulated Eicosanoid Production [148, 152–156, 158–163, 165–168]

Dysregulated Sphingolipid Signaling [169–174]

Decreased Alveolar Surface Area [129]

Pulmonary Alveolar Proteinosis (PAP) Luminal Surfactant Accumulation [6, 63]

AM Cholesterol Accumulation [59–64, 191]

Pneumonia Surfactant Lipid Alterations [67, 175]

Dysregulated Lipid Transport [176]

Host-Pathogen Lipid Interaction [179–190]

Alveolar Cellular Damage [193]

Influenza Lipid-Mediated Host Defense [5]

Host-Pathogen Lipid Interaction [205, 206]

Tuberculosis (TB) Host-Pathogen Lipid Interaction [210, 211, 215–218]

Host Eicosanoids Differentially Affect
Pathogenesis

[212–214]

SARS and SARS-CoV-2 Diffuse Alveolar Damage [222, 223]

T2C Hyperplasia [221, 222]
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Alveolar cellular environment and surfactant
biology
The alveolar epithelium is composed of alveolar type 1
(T1C) and type 2 cells (T2C). Type 1 cells cover most of
the alveolar surface and are highly specialized in per-
forming the gas exchange between blood and air. T1C
also participate in interactions with alveolar macro-
phages, and modulation of fibrotic responses [2, 3]. At
the junctions of the alveolar sacs reside the T2C, whose
main function is the production of surfactant.
Pulmonary surfactant is probably the best-known lipid

complex in the lung, and it is an absolute requirement for
respiration. Surfactant reduces surface tension during in-
spiration and prevents alveolar collapse at the end of expir-
ation. Alveolar T2C are the major lipid metabolic cells of
the lung because they need to orchestrate a complex set of
lipid metabolic pathways to effectively adjust surfactant
synthesis, secretion and recycling in different physiologic
situations. Pulmonary surfactant is a lipoprotein complex,
with 90% of its mass being lipid and the remaining 10%
proteins that are in many cases specific of the alveolar
compartment. Amongst the 90% lipid, the large majority is
phospholipid (PL), especially phosphatidylcholine (PC) and
more specifically dipalmitoyl phosphatidylcholine (DPPC),
the main lipid species responsible for the surface tension-
reduction properties of the surfactant mixture.

Phosphatidylglycerol is capable of modulating macrophage
function and it is used as a marker of lung maturity [4].
Palmitoyl-oleoyl-phosphatidylglycerol and phos-
phatidylinositol (PI) can antagonize Toll-like receptor
(TLR) activation. TLR activation is a crucial step in the
virulence of certain viruses such as Influenza A and Re-
spiratory Syncytial Virus [5], underscoring the role of phos-
phatidylglycerol and PI in controlling viral infections and
the associated inflammatory cascades [5]. Other lipids of
smaller abundance in alveolar surfactant include choles-
terol, sphingolipids and plasmalogen phospholipids [6, 7].
Surfactant lipid metabolic genes are transcriptionally

regulated by the same factors governing lipid metabolism
and lipogenesis in other tissues [8], and in T2C, surfactant
lipid synthesis and secretion are coupled with lipid avail-
ability [9]. T2C obtain lipid precursors from the plasma
using proteins capable of transporting and interacting with
lipids, such as CD36 and glycosylphosphatidylinositol-
anchored high density lipoprotein–binding protein 1
(GPIHBP1) [9–16]. De novo lipogenesis can also contrib-
ute to the intracellular pool of fatty acids (FA) in T2C. As
in other eukaryotic cells, the synthesis of PC in T2C
occurs mainly through the Kennedy pathway (Fig. 1). The
rate limiting enzyme of this pathway is CTP:phosphocho-
line cytidyltransferase alpha (CCTα). Newly synthesized
PC usually contains a monounsaturated FA in position sn-

Fig. 1 Surfactant lipid synthesis and exocytosis. Simplified scheme of intracellular pathways leading to de novo synthesis of DPPC and its routing
to lamellar bodies, from where it will be released into the alveolar lumen, where it will be used, recycled and degraded. For the synthesis, CDP-
choline and diacylglycerol are coupled to form PC. A large proportion of PC is remodeled to render DPPC. Surfactant is stored in lamellar bodies
until secretion to the alveolar lumen, where it organizes in bilayers and monolayers (see text for further detail). The surfactant life cycle is
completed by its recycling by T2C or degradation by AM. T1C: type 1 cell; T2C: type 2 cell, AM: alveolar macrophage; LB: lamellar body; SP:
surfactant protein; PC: phosphatidylcholine; DPPC: dipalmitoylphosphatidylcholine; CCTα: CTP:phosphocholine cytidylyltransferase alpha; PLA2:
phospholipase A2; LPCAT1: lysophosphatidylcholine acyltransferase 1.
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2, and incorporated PC can have heterogeneous acyl com-
position. Hence, PC needs to undergo remodeling by
phospholipase A2 (PLA2) and lysophosphatidylcholine
acyltransferase 1 (LPCAT1) through the Lands cycle to
render DPPC. Intracellular DPPC is then transported into
a specialized organelle, the lamellar body, through the spe-
cific transporter ABCA3 and stored there until secretion
to the alveoli [17–19]. Mouse models with loss of function
for ATP-binding cassette A1, G1, or A3 (ABCA1, ABCG1,
ABCA3) or CCTα all show surfactant insufficiency, pul-
monary intracellular accumulation of lipid, and inflamma-
tion [20–26]. In humans, impairment of lipid metabolism
in pulmonary T2C causes surfactant insufficiency result-
ing in deficient pulmonary function. For example, ABCA3
loss of function results in neonatal respiratory distress
syndrome and defective lamellar body synthesis [27].
In the alveolar lumen, surfactant reduces the surface

tension in the alveolar walls from 70 mN/m to nearly
1mN/m [28]. The biophysical properties and extracellu-
lar metabolism of secreted surfactant are complex and
the exact mechanisms for surfactant ability to reduce
surface tension during alveolar expansion and to support
high levels of pressure during lateral compression at the
end of expiration are still undergoing intense research
[29, 30]. Surfactant secretion by T2C occurs by exocyt-
osis, with lamellar bodies fusing their limiting membrane
with the apical plasma membrane and releasing their
content into the alveolar lumen (reviewed in [31]). The
content of the lamellar bodies is initially detected in the
alveolar spaces as densely packed lamellar body-like par-
ticles that are thought to organize in multiple phospho-
lipid bilayers and monolayers when they reach the
alveolar surface [32]. In vitro and ex vivo experiments
with clinically used surfactant and with simplified model

phospholipid mixtures have shown the coexistence of
two domains in the pulmonary surfactant film at physio-
logical temperatures: bilayers enriched in unsaturated
phospholipids and monolayers mainly composed of
DPPC. A “squeeze-out” mechanism has been proposed.
Compression of the film during expiration would result
in the formation of multilayers of phospholipids that
would re-spread during inspiration. These reversible
transitions between bilayer and monolayer formations
seem to be enabled by the hydrophobic surfactant pro-
teins B and C (SP-B and SP-C) [33–35]. The interactions
between lipids and proteins are complex and have been
discussed in detail elsewhere [36].
Surfactant-specific proteins account for ~ 10% of the

lipoprotein complex by mass, but they affect the behav-
ior of the surfactant lipids. The most abundant and
studied proteins are Surfactant Proteins A, B, C and D
(SP-A, SP-B, SP-C and SP-D). SP-A and SP-D are
hydrophilic and participate in the immune function
roles of surfactant, as they can bind exogenous patho-
gens and facilitate their clearance by alveolar macro-
phages. Indeed, SP-A and SP-D knockout mice are
more susceptible to infections and other lung diseases
[37–40]. In contrast, SP-B and SP-C are hydrophobic
and participate in surfactant lipid film dynamics. Once
it is secreted into the alveolar lumen with the rest of
the components of the lamellar bodies, SP-B is
adsorbed in the air liquid interface. Extracellularly, SP-
B participates in stabilizing the lipid film at all stages of
the respiratory cycle [41]. SP-C is an exclusive constitu-
ent of pulmonary surfactant. SP-C also acts at the lipid
film and participates in enabling the lipid to be com-
pressed in a manner compatible with subsequent re-
spreading during inspiration [42, 43]. SP-C knockout

Fig. 2 Alveolar lipids in pulmonary homeostasis. Schematic representation of alveolar cell types and the main lipids that partake in multiple
functions during pulmonary homeostasis and pathophysiological conditions.
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models develop profound alterations in surfactant lipid
metabolism, discussed in the following pages in the
context of disease [44–46].
Cholesterol comprises 5–10% of surfactant lipid. Experi-

ments using native surfactant material showed that choles-
terol was required for effective spreading properties of the
lipid monolayer, as well as maintenance of the lateral struc-
ture, with differentiated lipid domains [47]. It was initially
thought that cholesterol impaired the surface tension activity
of surfactant, leading to its exclusion in the initial prepara-
tions clinically used for premature infants. However, subse-
quent experiments showed that cholesterol inhibits film
compression and surface tension activity only at 20% and
higher concentrations in the surfactant [48]. Elevated levels
of cholesterol in the surfactant mixture has been proposed
to be a mechanism for ventilator-induced lung injury [49]
and cholesterol crystals have been found in the bronchoalve-
olar lavage (BAL) of idiopathic pulmonary fibrosis (IPF) pa-
tients [50]. Patients with acute respiratory distress syndrome
(ARDS) also showed increased neutral lipid amounts in their
BAL and this elevation persisted after exogenous surfactant
administration. In vitro, neutral lipid supplementation of a
clinically used or natural surfactant reduced surface tension
properties, with monoglycerides and cholesterol exhibiting
the greatest inhibitory effects [51]. Multiple experiments
have consistently shown the ability of neutral lipids to dis-
rupt surfactant function [48, 49, 52, 53]. Neutral lipids may
function as barriers to surfactant therapy efficacy, hence fur-
ther contributing to pathology. In a clinical study, the thera-
peutic benefits of exogenous surfactant administration in
ARDS were hampered by accumulation of cholesterol in the
alveolar space [51].
Extracellular surfactant can be degraded by alveolar mac-

rophages (AM) or recycled by T2C during physiological
conditions (Fig. 1) [17]. AM make up 90 to 95% of the cells
collected by BAL [54], and they degrade surfactant lipids
[55]. This function can be essential also during pathological
conditions when the lung is exposed to oxidizing agents that
can induce oxidation of surfactant proteins and lipid, as well
as lipid aggregation [56, 57]. Granulocyte macrophage col-
ony stimulating factor (GM-CSF) is required for macro-
phages’ ability to clear surfactant, and deficiency in GM-CSF
can lead to excessive surfactant accumulation and pulmon-
ary alveolar proteinosis (PAP) [58]. Indeed, PAP is charac-
terized by abnormal accumulation of surfactant in the
alveoli and the terminal airways. Quantitative lipidomics of
BAL of patients with PAP showed a significant increase in
both free cholesterol and cholesterol esters. Other surfactant
components, including sphingolipids, ceramides, PE, PS, PC,
LPC and the surfactant proteins were also increased [6].
The clinical course is heterogeneous, ranging from spontan-
eous resolution to death due to respiratory failure [59].
In the absence of GM-CSF signaling, AM massively
accumulate intracellular cholesterol-rich lipid droplets

and extracellular surfactant also showed an increased
proportions of cholesterol. This points out at defects
in GM-CSF signaling and AM cholesterol clearance
as the primary drivers of PAP [60–62].
The most effective and proven treatment for PAP is

whole lung lavage [63], and GM–CSF can be used as inhal-
ation therapy, or subcutaneous injection if whole lung lav-
age fails or is contraindicated. Experimentally, inhibition of
cholesterol synthesis by statins showed positive therapeutic
value. Since the main driver of PAP is defective cholesterol
clearance by AM and not increased synthesis, the mechan-
ism for the observed effects is not clear [64].
On the other end of the spectrum is surfactant deficiency,

the cause of neonatal IRDS [65, 66]. But deficiency and al-
terations in surfactant lipids and proteins have long been
described also in adult pulmonary diseases, including IPF,
adult onset PAP, ARDS and lung cancer [27, 67–69]. Gen-
etic alterations in components of the surfactant metabolism
pathway have detrimental effects on pulmonary function
and disease pathogenesis. Mutations in the genes encoding
SP–A, SFTPA1 and SFTPA2, are associated with interstitial
lung disease and increased susceptibility to adenocarcinoma
of the lung [70, 71]. Autosomal recessive mutations in the
gene encoding SP–B, SFTPB, were among the earliest de-
scribed [72, 73]. SP–B–deficient humans and mice develop
respiratory distress and respiratory failure independent of
surfactant lipid composition [74–76]. SP–B knockout mice
show aberrant lamellar body formation, and incorrect SP–
C intracellular processing [75]. The lack of SP–B disturbs
lamellar body formation in T2C, impairs processing of
other surfactant proteins, and disrupts surfactant recycling
[77]. Deficiency of ABCA3 also recapitulates this phenotype
and causes respiratory failure [78, 79]. Consistently, muta-
tions in the homeodomain–containing transcription factor
TTF–1, master regulator of surfactant protein and ABCA3
expression, were also associated with respiratory failure
[80]. Finally, SP–C mutations were also associated with in-
creased susceptibility to pneumonitis and emphysema due
to decreased SP–C–mediated alveolar surfactant spreading
[45]. Other genetic abnormalities or deficiencies in SP–C
lead to cholesterol accumulation in the alveoli and are de-
scribed in detail in the following pages [46, 81].
Although we focus on the lipid aspects of alveolar cell

function in this review, it is worth mentioning that alveolar
cells partake in other processes. T2C contribute to other
essential roles for pulmonary homeostasis and alveolar re-
pair [82], as well as in immune defense processes [83] and
inflammation [84, 85]. Interstitial macrophages are also cru-
cial in regulating and suppressing unwanted or excessive
immune reactions [86]. During pathogenic processes, fibro-
blasts recruit inflammatory cells, and partake in remodeling
and regenerating the extracellular matrix after tissue injury.
Excessive activation of fibroblasts can lead to fibrosis and
scarring of the lung [87]. The role of lipid mediators in the
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development of fibrosis and other adult and chronic pul-
monary diseases is discussed in the following pages.

COPD and other smoking–related diseases
The pathophysiology of chronic obstructive pulmonary dis-
ease (COPD), which involves emphysematous destruction of
alveolar sacs and airway remodeling, is highly dependent on
environmental and genetic factors. Cigarette smoking is
among the most prevalent pulmonary public health con-
cerns worldwide and is a leading cause of COPD in smokers
and former smokers, although other causes, including
exposure to environmental pollutants, also contribute sig-
nificantly to this burden.
COPD patients have both decreased surfactant amount

and altered surfactant composition, potentially making it less
effective at reducing the surface tension (Table 1) [6, 7, 88].
Our group recently reported the decrease in total surfactant
lipid, as well as specific lipid species, in patients with COPD
[7]. Decreases in total BAL lipid, total PL, PC 30:0, PC 32:0,
and total cholesterol, amongst other lipids, strongly corre-
lated with decreased lung function. The main surfactant
lipid changes observed in COPD patients were replicated in
a mouse model exposed to 6months of second–hand
smoke, which enables future mechanistic research. This
study is well aligned with prior ones showing that smoking
reduced BAL PL content in humans [89]. Surfactant re-
placement therapy provided pulmonary function improve-
ment in a small clinical trial in individuals with stable
bronchitis, often a component of COPD [90]. However, the
mechanism for this improvement, as well as the roles of sur-
factant lipids in COPD, are not clear [67, 91].
COPD and emphysema can result in decreased alveolar

T2C or premature senescence, potentially impacting lipid
metabolism (Table 1) [92, 93]. Cigarette smoking can
affect lung lipid homeostasis through direct and indirect
mechanisms. The mechanisms for smoke exposure–in-
duced damage to the T2C include inflammation, oxidative
stress, dysfunctional DNA repair mechanisms, and prote-
olysis–antiproteolysis imbalance, amongst others [94–96].
Indeed, T2C of individuals with emphysema have in-
creased reactive oxygen species generation and DNA
damage when compared to those of healthy controls [97].
In T2C–derived human A549 cells, cigarette smoke in-
duced apoptosis, inhibited proliferation, and spurred epi-
thelial–mesenchymal transition (EMT) [98].
Smoke exposure damaged T2C and caused alterations

of surfactant secretion and composition in multiple animal
models [95, 99–104]. Most studies report decreased sur-
factant lipid availability after chronic exposures to smoke,
a common model of COPD. Rats exposed to 60 weeks of
nose–only smoke showed significant decreases in BAL
DPPC content when compared to room air controls [100].
BAL from smoke–exposed rats had excessive surfactant

compressibility and reduced re–spreadability. A mechan-
ism for smoke decreasing surfactant levels can be direct
damage to the T2C, including alterations in cell adhesion,
proliferation and direct cell lysis.
At the molecular level, there are many potential mech-

anisms of smoke–mediated disruption of surfactant me-
tabolism. Smoke was found to directly interfere with
DPPC synthesis by reducing PLA2 activity by more than
50% [101], and both in humans and mice, smoking
caused alterations in pulmonary expression of proteins
implicated in reverse lipid transport, including ABCA1,
ABCG1, ApoE and SRB1 [105, 106]. Cultured T2C
acutely exposed to cigarette smoke extract showed in-
hibition of stimulated PC secretion, while basal PC se-
cretion was not affected [99]. Another mechanism by
which cigarette smoke may interrupt surfactant metabol-
ism is by the generation of free radicals, and enhancing
oxidative stress, which in turn can elevate the levels of
TNFα, and other proinflammatory markers [107, 108]
[103]. In addition, nicotine can induce excessive expres-
sion of SP–A and SP–C in an embryonic mouse lung
culture [109]. In addition to T2C damage, cigarette
smoke exposure also affect the whole lung parenchyma.
In addition to alveolar congestion following smoke ex-
posure, one study reports diffuse alveolar collapse, septal
hypertrophy, and other gross lung abnormalities [104].
AM are also affected by cigarette smoke (Table 1). Tran

et al. [110] showed that AM exposed to cigarette smoke
had less efficient efferocytosis, and this was attributed to
impaired sphingosine kinase (SPK) activity. Similarly,
in vivo instillation of ceramide impaired AM efferocytosis,
and this effect was reproducible by sphingosine treatment,
suggesting the involvement of ceramidase activity in this
impairment [111]. Efferocytosis is necessary for elimin-
ation of airway apoptotic cells that if not removed, can
eventually necrotize and lead to chronic inflammation
[112]. Both cigarette smoking and electronic cigarettes
disrupted the endothelial barrier by affecting intracellular
ceramides, mitogen activated protein kinase (MAPK) acti-
vation and myosin light chain phosphorylation [113].
The use of electronic cigarettes and other “vaping”

devices has become popular in recent years. Electronic
cigarette use can have deleterious effects on lung lipid
metabolism regardless of nicotine content (Table 1). The
use in mice of an electronic nicotine delivery system
(ENDS) during 4 months lead to increased deposition of
surfactant in the alveoli without increase in inflamma-
tory markers or emphysema, and interestingly, there
were no differences between the nicotine–containing
and vehicle–only groups when compared to air–exposed
mice. Exposure to ENDS increased cytoplasmic lipid
droplets in AM and increased the number of lamellar
bodies with disrupted architecture in T2C. In addition,
the expression of ABCA1 and ABCG1 was significantly
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decreased, together with the expression of surfactant
proteins SP–A and SP–D. When challenged with influ-
enza infection, ENDS–treated mice showed disrupted
innate immunity and enhanced inflammation, with per-
sistent expression of interferon–γ (IFN–γ) and tumor
necrosis factor–α (TNF–α) [114].
In November 2019, a public health concern was raised

following the report of multiple cases of e–cigarette and
vaping associated lung injury requiring hospitalization
with some cases being fatal, and with high incidence
amongst teenagers and young adults. The symptoms in-
cluded dyspnea and hypoxemia with no associated infec-
tion, and in multiple cases the BAL showed increased
accumulation of neutral lipids in AM. While the mecha-
nisms for the lung injury have not been deciphered at
the moment of writing this article, multiple cases seem
to be associated with vaping of cannabinoid and other
terpene–rich oils that may have been customized by the
final users [115–120]. In a histopathologic study of lung
biopsies obtained from vaping–induced lung injury
cases, acute lung injury was confirmed and foamy AM
and pneumocyte vacuolization were observed in all the
samples [118]. The potential effects of lipid–vapor inhal-
ation in alveolar lipid metabolism are still largely
unknown.
Other particulate and gaseous environmental agents

have also been linked to altered surfactant lipids. Chronic
inhalation of silica dust causes silicosis, which is character-
ized by foamy macrophages. These AM have higher intra-
cellular levels of neutral lipids and show elevated mRNA
levels of the lipid receptor CD36 and transcription factor
PPARγ [121]. Inhaled ozone (O3) generated from nitrogen
oxides and volatile hydrocarbons alter lung function and
cause inflammation [122]. Once inhaled, approximately
80% of O3 remains in the lungs and may react with the
carbon–carbon double bonds of surfactant phospholipids
and cholesterol, a process termed “lipid ozonation” [122].
In addition, common household dust mites have also been
linked to the generation of proinflammatory eicosanoids
and cytokines in alveolar macrophages [123].

Lipids in interstitial lung disease and idiopathic
pulmonary fibrosis
IPF is a rare disease that has attracted attention lately
due to the approval of the first few drugs for its treat-
ment. IPF patients experience a progressive decline in
pulmonary forced vital capacity (FVC), with their lung
parenchyma and airways showing extensive remodeling,
fibroblast proliferation, excessive extracellular matrix de-
position and loss of compliance. Together, the clinical
manifestation is shortness of breath and difficulty in
lung inflation. The progression after diagnosis is fast,
with death occurring in 3–10 years unless a transplant is

provided. The currently approved drugs decelerate the
disease progression, but there is no regression.
A main difficulty in IPF treatment is the lack of

markers for early disease detection. In an attempt to
identify a biomarker, a small study showed increased
LysoPC in the serum of IPF patients, and this provided a
rationale for the development of autotaxin inhibitor
drugs [124]. However, there are no specific pulmonary
biomarkers. Another difficulty in IPF treatment lies on the
current lack of knowledge on early triggers and clear
mechanisms for disease progression before the end–stage,
when patients normally present extensive remodeling.
Recent studies using single cell RNA sequencing have

shed some light on the pathobiology of IPF. Reyfman
et al. [125] detected over 500 genes differentially
expressed in patients with IPF. Interestingly, in T2C the
top 500 genes downregulated in IPF were all included in
lipid metabolic pathways, including “sterol/steroid bio-
synthetic process”, “cholesterol metabolic process” and
“lipid metabolism process”. AMs also showed profound
alterations in lipid metabolism, with downregulated
pathways including “cellular response to fatty acids” and
“positive regulation of lipid metabolic processes”. It is
not clear if this loss of ability to handle lipid metabolism
by alveolar cells constitutes a cause or a consequence of
the disease. The data were confirmed with further qPCR
analysis and by other studies [126–128], and these path-
ways actually comprised the IPF RNA signature of the
whole lung when different cell types were not grouped
separately.
Naturally occurring mutations can confer susceptibility

to fibrosis development later in life. Mutations in
ABCA3, like the most common missense mutation
E292V, result in IPF development. Mice carrying this
mutation showed chronic surfactant insufficiency, with
decreased PL in BAL. T2C showed increased number of
lamellar bodies, but of smaller volume, and decreased
alveolar surface area. BAL cells, mostly AMs, were in-
creased and there were numerous tissue morphological
changes, including peribronchial immune infiltrates and
a combination of fibrotic and emphysematous regions.
Bleomycin instillation, a common model of experimental
fibrosis, generated worse fibrosis and higher morbidity
in mutant than in WT mice [129]. Mutations in surfac-
tant protein C (SP–C) also result in IPF development.
Nureki et al. [81] generated tamoxifen–inducible knock–
in mice expressing the substitution of isoleucine by
threonine at codon 73, a mutation associated with famil-
ial IPF (SP–CI73T mice). SP–CI73T mice had overexpres-
sion of SP–C and developed premature fibrosis that
recapitulated the human phenotype, with collagen de-
position, T2C hyperplasia, fibroblast proliferation, and
decreased compliance. Intracellular lipid metabolism and
surfactant lipids were not assessed in this model, and it
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remains unknown so far if the ability of T2C from SP–
CI73T mice to sustain normal lipid homeostasis is
affected. In addition to the findings above, SP–C was re-
cently reported to modulate alveolar lipid homeostasis
during development of fibrosis. SP–C knockout mice,
aside from to developing spontaneous lung fibrosis, also
showed AM cholesterol accumulation. In vitro, addition
of SP–C to cholesterol–containing vesicles in an AM cell
line increased expression of genes involved in cholesterol
metabolism and transport [46]. These are the first
models of spontaneous lung fibrosis and are valuable
tools for the study of IPF pathogenesis.
In agreement with the observations in human IPF,

bleomycin–induced fibrosis caused decrease in mRNA
of lipogenic genes in whole lung and specifically in T2C
[130]. Intracellular lipids including cholesterol, free FA,
triglycerides and PL were decreased, as well as ABCA3
mRNA expression. However, BAL lipids were increased.
Consistently with a decreased intracellular lipogenic pro-
gram, T2C showed increased phosphorylation of AMP
kinase and acetyl–CoA carboxylase, and they were more
glycolytic, with decreased intracellular ATP levels and
increased lactic acid production. In vitro experiments
with T2C showed that bleomycin induced lipid secretion
and increased extracellular ATP, a known surfactant
secretagogue, while surfactant lipid reuptake was im-
paired. Treatment of cultured AM with lipid extracts
from BAL of bleomycin–treated mice resulted in foam
cell formation. Treatment with oxidized PC was by itself
capable of increasing mRNA expression of transforming
growth factor beta (TGFβ) and M2 markers in cultured
macrophages. These observations led the authors to
propose a model where the increase in TGFβ1 and colla-
gen deposition secondary to bleomycin injections causes
accumulation of abnormal lipid surfactant in the alveolar
space. Accumulated PC can then become oxidized and
induce AM transformation into foam cells, further
contributing to the profibrotic phenotype generating a
feedforward loop. The extent of the overlap of this
mechanism with the observed lipid metabolic RNA sig-
nature of human IPF patients remains to be determined,
but in any case, this work shows a dysregulation of lipid
homeostasis that integrates three different alveolar com-
partments, T2C, alveolar space and alveolar macro-
phages, during the pathogenesis of pulmonary fibrosis.
Experimental bleomycin exposure results in alterations in

alveolar lipids, but there is no consensus on the specific
changes and directions in different models of experimental
fibrosis. Similarly, human studies have reported seemingly
contradictory data regarding the direction and magnitude
of change in surfactant lipids during disease, and there is
no agreement on a mechanism for the observed alterations
[67] (Table 1). In some studies, increased levels of PC, chol-
esterol and bis monoacyl phosphoglycerate (BMP) in whole

lung tissue and of all lipids in BAL up to 21 days after bleo-
mycin have been reported [131]. Intratracheally adminis-
tered bleomycin increased cholesterol and free FA in BAL
in rats, and this was associated with increased collagen de-
position and epithelial cell proliferation, elastic recoil and
surface tension of the BAL. In these studies, the acyl com-
position of the cholesterol esters in BAL was prominently
16:0, 18:2, 18:1 and 18:0 and it did not change with bleo-
mycin treatment [132, 133].
Pulmonary fibrosis induced by administration of the an-

tiarrhythmic compound amiodarone caused hyperplasic
T2C that accumulated PL, BMP and surfactant proteins,
and this was associated with ER stress and enhanced pro–
apoptotic response. In contrast to bleomycin treatments,
amiodarone–induced fibrosis decreased extracellular sur-
factant DPPC and proportionally increased unsaturated
species of PC. Similarly, phosphatidylglycerol decreased
and plasmalogen phosphatidylethanolamine increased in
BAL [134].
DNA damage and telomere shortening in T2C induced

pulmonary fibrosis and decrease survival in mice [135]
(Table 1). T2C genetic deletion of telomeric repeat
factor 1 (TRF1), a protector of telomere ends, induced
pulmonary fibrosis by increasing cellular senescence and
apoptosis. In addition, bleomycin treatment in the
setting of telomerase–deficiency also recapitulated this
fibrotic phenotype [135]. Mice overexpressing telomer-
ase in T2C showed increased T2C proliferation and
downregulation of fibrotic and inflammatory gene ex-
pression [136]. Aberrant telomere shortening has previ-
ously been associated with alveolar stem cell dysfunction
[137], and these new data show how telomere dysfunc-
tion and subsequent T2C–depletion could be used as a
model of IPF.
Bleomycin, silica and radiation exposures all showed

deranged lipid metabolism in AMs [130] (Table 1). They
accumulated neutral lipid as well as phospholipid, and
showed increased mRNA expression of lipid transporters
CD36, scavenger receptor A (SRA), ABCA1, ABCG1 and
its upstream regulator LXRα. There was an increase in ox-
idized PC both in BAL and intracellularly in the alveolar
macrophages. Simultaneously with these events (14 days
after bleomycin treatment), terminal airspaces started to
show macrophage infiltration, and progressively increased
mRNA expression of TGFβ1 and collagen 1a1. Chrono-
logically, histochemical and biological onset of fibrosis oc-
curred after AM lipid accumulation had started. Fibrosis
subsequent to nitrogen mustard exposure triggered the
transformation of AM into foam cells [138], and in this
case, lipid–laden pulmonary macrophages also showed al-
tered lipid handling pathways as analyzed by RNAseq.
Despite the uncertain direction of the BAL lipid changes

during IPF, administration of extracellular surfactant lipid
was attempted to improve pulmonary compliance. In mice
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with bleomycin–induced fibrosis, surfactant replacement
therapy rescued compliance and inspiratory capacity, and
the number of open alveoli was strongly correlated with
static compliance [139]. Overexpression of TGFβ1, which
occurs naturally during IPF progression, was associated
with loss of apical membrane in T2C during experimental
fibrosis [140]. Pretreatment with commercially available
surfactant (Curosurf) improved lung mechanics and tissue
elastance, increased the number of open alveoli, and pre-
served the apical membrane surface in T2C. This raises
the question of what is the mechanism of alveolar surfac-
tant to protect against the deleterious effects of TGFβ1
treatment. Decreased BAL surfactant proteins, as well as
their intracellular mRNA and that of the lipid transporter
ABCA3 preceded morphological remodeling of TGFβ1–
treated mice, pointing at the role of intracellular T2C lipid
metabolism regulation in the development of fibrosis
[141]. Through a different mechanism, DPPC and Sur-
vanta for 24 and 48 h increased eicosanoid synthesis and
inhibited thromboxane A2 synthesis in silica dust–treated
AMs [142].
Intracellular lipid mismanagement also partakes in fi-

brosis development (Table 1). IPF patients and mice
treated with bleomycin show decreased expression and
activity of multiple lipid metabolic enzymes. Elongation
of very long chain fatty acids protein 6 (Elovl6) is one of
them. Elovl6 catalyzes the elongation of C16 fatty acids
to longer acyl chains and renders unsaturated fatty acyl
chains. Elovl6−/− mice are protected from HFD–induced
hepatic steatosis and fibrosis, potentially due to their
higher palmitoleic/palmitic acid ratio. Alveolar T2C also
express Elovl6, and when the Elovl6−/− mice were treated
with bleomycin, they developed worse fibrosis, with
more collagen deposition and increased mortality [143].
The pulmonary FA composition was altered in Elovl6−/−

mice, with a higher proportion of palmitic acid C16:0, in
detriment of palmitoleic C16:1(n–9), and this effect was
more pronounced after bleomycin. Treatment of cul-
tures of a T2C cell line with palmitic acid triggered
apoptosis and increased TGFβ1 expression, both of
which were attenuated by treatment with unsaturated
fatty acids oleic or linoleic acid. The authors proposed
that the increase in palmitic acid content resulted in
profibrotic events such as increased TGFβ and apoptosis
through increased intracellular generation of reactive
oxygen species. Increased FA content, including palmitic
acid has been encountered in IPF lungs [144, 145], and
treatment of cell cultures with palmitic acid triggered ER
stress and apoptotic responses. In vivo, mice pretreated
with 2–weeks of high fat diet (HFD) had higher collagen
content upon bleomycin treatment. However, it is diffi-
cult to assess the contribution of increased extracellular
availability of lipid and subsequent pulmonary lipid me-
tabolism to this phenotype, since HFD is known to

trigger multiple systemic responses, including low–grade
inflammation prior to the onset of obesity [146].
ER stress can serve as a priming event to pulmonary

fibrosis by affecting intracellular lipid events. For example,
enhanced autophagy in Golgin A2 (GOLGA2)−/− mice
limited the subcellular availability of functional mitochon-
dria and lamellar bodies, and this was associated with de-
creased DPPC and a mild increase in extracellular matrix
(ECM) deposition in both lungs and liver [147]. Intranasal
tunicamycin increased ER stress, as well as expression of
lipogenic enzymes fatty acid synthase (FAS), stearoyl–
CoA desaturase 1 (SCD1) and diglyceride acyltransferase
(DGAT), their upstream regulator SREBP1, and intracellu-
lar triglyceride and PL content [148]. Loss of mitochon-
drial mitofusin 1 or 2, as well as inhibition of FAS in T2C,
worsened bleomycin–induced fibrosis and was associated
with perturbed surfactant lipid metabolism [149]. Silica
treatment also resulted in a similar lipid synthetic signa-
ture that could be rescued by treatment with LXR agonist
TO901317, which has been shown to be antifibrotic in
other studies [150]. Dysregulated intracellular lipid metab-
olism can be a cause and a consequence of ER stress. The
sole inhibition of SCD1 was enough to induce ER stress
and collagen deposition. It was not determined if the po-
tentially increased proportion of saturated fatty acids, in-
cluding palmitic, resulting of SCD1 inhibition could
contribute to this ER stress [148, 151]. Lipid metabolic
pathways are often challenging to interpret unless direct
metabolite measurements are performed, since same fatty
acid substrates can result in different products, with differ-
ent implications in metabolic and inflammatory pathways,
highlighting the relevance and complexity of metabolic
fluxes in different cellular conditions.
Activation of PLA2 and its action on membrane PC

can release arachidonic acid (AA), which serves as a pre-
cursor for eicosanoids, potent signaling lipids. AA can
be further processed by three different pathways. The
cyclooxygenase pathway leads to the generation of pros-
taglandin H and its derived prostaglandins and throm-
boxanes, collectively called prostanoids. AA metabolism
by the lipoxygenase (12/15 LOX) pathway generates leu-
kotrienes and lipoxins, amongst other lipids, and metab-
olism by the epoxygenase P–450 pathway generates
epoxyeicosatetraenoic acids. The functions of eicosa-
noids in IPF have been previously summarized in the lit-
erature [152, 153] and here we will only briefly mention
the latest updates.
Prostaglandins (PGs) and other cyclooxygenase 2

(COX2)–derived prostanoids seem to be protective
against experimental fibrosis. In mice, COX2 but not
COX1 deletion worsened the fibrotic phenotype induced
by bleomycin [154]. The specific PG downstream of
COX2 and responsible for these observed effects seems
to be cell–type specific. Hematopoietic cells express
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PGD, and PGD synthase knockout mice had higher
degree of collagen deposition and increased mRNA
expression of TNFα and other pro–inflammatory media-
tors [155]. Fibroblasts from IPF patients synthesize lower
amounts of PGE2 than control subjects, and they are
also less responsive to treatments with PGE2 [156]. The
mechanisms for the antifibrotic effects of PGE2 are un-
clear, with different studies having shown even contra-
dictory conclusions in some cases. Mice knockout for
PGE synthase 1 (PGES1) were unable to increase PGE2
amounts after bleomycin. However, no differences were
observed in inflammation, fibrosis and pulmonary loss of
function between WT and PGES1−/− mice. Similarly,
knocking out PGE2 or its receptors EP2 or EP4 did not
alter the course of bleomycin–induced fibrosis. In con-
trast, knocking out the receptor for PGI2 phenocopied
COX2−/− mice, suggesting that the antifibrotic effects
downstream COX2 are attributable to PGI2 and not
PGE2. However, other experiments have shown that the
responsiveness to PGE2 differs according to fibrosis eti-
ology, and that there is significant inter–patient variabil-
ity [157]. This could be related to the ability of the cells
to successfully trigger local signal events through PGE2
and its receptor EP2. Fibroblasts from human and mur-
ine fibrotic lungs showed lower expression of EP2 and
this was associated to its promoter’s hypermethylation
[158]. In vivo, administration of PGE2 prior to bleo-
mycin–induced fibrosis offered protective effects against
decreased pulmonary function and increased collagen
production. However, there was no therapeutic effect, as
experimental fibrosis developed equally in mice treated
with saline or PGE2 after fibrosis had been induced with
bleomycin [159, 160]. TGFβ stimulation of a human
fibroblast cell line altered the expression of over 1000
genes, and treatment with PGE2 reversed multiple of
these changes, especially those involved in the develop-
ment of a myofibroblast phenotype [161, 162]. These ef-
fects were reproducible in a cell line of fetal fibroblasts
and seemed to be mediated by receptor EP2.
A different mechanism for the antifibrotic effects of

PGE2 involves the activation of plasminogen and plasmino-
gen activator system [163]. PAI–1−/− mice showed in-
creased production of PGE2 in the lung. Treating primary
fibroblasts from control and bleomycin–treated mice with
both uPA and plasminogen together, but not when sepa-
rated, increased PGE2 secretion and COX2 expression. The
authors suggested an axis plasminogen/plasmin/extracellu-
lar hepatocyte growth factor (HGF)/HGF receptor as antifi-
brotic mechanism. But other mechanisms independent of
HGF have also been proposed [164]. Plasminogen activa-
tion and plasmin enhanced protein kinase A (PKA) signal-
ing by decreasing protein phosphatase 2A (PP2A) activity,
thus leading to sustained phosphorylated status of PKA
substrates. Suppression of PP2A activity in IPF–patient

derived cell lines of fibroblasts helped overcome the resist-
ance to PGE2 treatment. Finally, it was concluded that
PAI–1−/− mice are resistant to experimental fibrosis be-
cause of a sustained activation of plasminogen and en-
hanced proteolytic activity of uPA and downstream
activation of plasmin.
Leukotrienes are lipid metabolites also derived from ara-

chidonic acid and with signaling properties in pulmonary
fibrosis. Leukotriene–deficient 5–lipooxigenase knockout
mice (5–LO−/− mice) were resistant to FITC–triggered
experimental fibrosis potentially due to their inability
to trigger receptor–mediated proliferation of basal
fibrocytes [165].
Lipoxins, resolvins, protectins and maresins are other ei-

cosanoid lipids with different chemical structures grouped
under the umbrella term “resolving mediators” due to
their roles in the resolution of inflammation. Resolvins
and maresins derive from docosahexaenoic acid (DHA).
In mice, resolvins ameliorated the bleomycin–induced in-
creases in BAL cellularity and profibrotic cytokines, they
improved Aschroft fibrosis score and also restored the
levels of MMP9 to pre–bleomycin levels [166]. Maresin 1,
which is produced by activated macrophages during in-
flammation, suppressed EMT by suppressing Smad2/3
and Akt signaling in vivo [167]. In vitro, Maresin 1 pre-
vented TGFβ1–induced fibroblast proliferation, migration
and differentiation into myofibroblast [168].
Amongst sphingolipids, Sphingosine–1–phosphate (S1P)

is perhaps the best studied lipid in pulmonary fibrosis.
Sphingolipids are essential constituents of plasma mem-
branes and regulate important cellular functions, including
apoptosis and proliferation. The balance of intracellular
sphingomyelin and ceramide is crucial in inflammatory con-
ditions, and the roles of ceramides and sphingolipids in
chronic lung disease have been reviewed recently [169, 170].
S1P is synthesized by phosphorylation of sphingosine by
sphingosine kinase 1 (SPK–1) and Sphingosine Kinase 2
(SPK–2). S1P can be secreted as a potent water–soluble
signaling lipid capable of activating G–proteins coupled
receptors in the target cells. Signaling can be stopped by
degradation of S1P through the action of S1P phosphatases
and S1P lyase [171].
S1P and SPK–1 were higher in BAL of IPF patients, and

the expression of SPK1 inversely correlated with pulmon-
ary function measures such as diffusing capacity for car-
bon monoxide (DLCO), forced expiratory volume in 1 s
(FEV1), and FVC. Bleomycin–induced fibrosis in animal
models showed consistent phenotypes, and genetic dele-
tion of SPK1 improved pulmonary fibrosis, while deletion
of S1PL worsened it [172, 173]. In vitro studies to seek the
mechanism showed that fibroblast treatment with TGFβ
increased S1P as well as expression of S1PL through
SMAD3 activation. Overexpression of S1PL restored
intracellular S1P levels through modulation of autophagy.

Agudelo et al. Lipids in Health and Disease          (2020) 19:122 Page 10 of 21



Together, these data highlight the relevance of fine regula-
tion of S1P signaling during disease (Table 1) [174].

Role of alveolar lipids during pulmonary
infections
The lungs are constantly exposed to microbes that enter
the respiratory tract by aspiration. An effective pulmon-
ary host defense is able to tolerate a low level of micro-
bial invasion. However, the development of respiratory
infections may occur in the event of defect in host
defense, an overwhelming inoculum, or exposure to a
virulent microorganism. Respiratory infections can be
broadly categorized into upper respiratory tract infec-
tions, affecting the mouth, nose, sinuses, throat, larynx
and trachea, and lower respiratory tract infections,
affecting the lower airways, bronchi and alveoli. Upper
respiratory tract infections typically present as common
colds, influenzas, epiglottitis, sinusitis, and pharyngitis.
Lower respiratory tract infections typically include bron-
chitis, bronchiolitis and pneumonia. Some of the deadli-
est infections, including influenza, pneumonia, and
tuberculosis, exploit properties of lipids to enhance their
propagation and pathogenicity, making lipid metabolism
a critical player in the pathogenesis of pulmonary
infections.
Pneumonia encompasses an umbrella of conditions

that may arise from many etiologies, including bacterial,
viral, mycoplasmal, fungal, lipoid, and aspiration of other
exogenous substances. The most common form of pneu-
monia is bacterial pneumonia, and it alters host lipid
composition and transport. BAL from human subjects
with bacterial pneumonia showed mild decrease in total
surfactant PL, marked decrease in glycerophospholipid
and increase in phosphatidylinositol and sphingomyelin
amounts (Table 1) [67]. While much remains to be un-
covered regarding the consequences of surfactant alter-
ations, these changes in the surfactant lipidome were
thought to interfere with the surface tension reduction
and antimicrobial functions [67, 175]. In addition to sur-
factant lipids, other BAL lipids also changed during
pneumonia. Cardiolipin, a mitochondrial–specific lipid,
was significantly elevated in BAL from infected humans
and mice, and this markedly increased alveolar surface
tension, decreasing lung compliance and increased IL–
10 and BAL protein concentration [176]. Enrichment of
cardiolipin in BAL was also correlated with decreased
BAL surfactant proteins SP–A and SP–C and disruption
of alveolar architecture. One proposed mechanism was
that cardiolipin interferes with the packaging of surfac-
tant DPPC, thereby increasing surface tension. The
amount of cardiolipin in the alveolar lumen is regulated
by the cardiolipin transporter ATP8b1, which internal-
izes and sequesters cardiolipin from the extracellular
space. Mice bearing a missense mutant form of ATP8b1

present in many humans showed increased susceptibility
to infection and infection–induced lung injury [176].
These increases in BAL cardiolipin content are also con-
sistent with other types of acute lung injury [177, 178].
Interestingly, not only does bacterial pneumonia influ-

ence host surfactant composition, but exposure of bacteria
to specific surfactant lipids was found to alter bacterial
transcriptomics suggesting novel mechanisms of host–
pathogen interaction. K. pneumoniae MGH78578 exposed
to purified PC and cholesterol in vitro showed increased
transcriptional levels of genes involved in capsule synthe-
sis, lipopolysaccharide modification, antibiotic resistance,
biofilm formation, and metabolism [179]. This increase in
virulence gene expression may be especially relevant in
cases of PAP and associated surfactant lipid accumulation.
Mechanistic studies are needed in this field to determine
the potential roles of the different surfactant lipids in dif-
ferent types of infection.
Lipopolysaccharide (LPS) is a major immunogenic

constituent of the Gram–negative bacterial cell mem-
brane. Accordingly, LPS is recognized by the host im-
mune system, including TLRs, and triggers the cellular
release of pro–inflammatory cytokines, eicosanoids, and
potent vasodilators. Structurally, LPS is composed of
Lipid A and two different oligosaccharides. Lipid A con-
tains multiple fatty acid chains, and can interact with
other hydrophobic lipids. Indeed, LPS interacts with pul-
monary surfactant and inactivates it. LPS–surfactant
complexing was shown in pneumonia and was proposed
to contribute to its pathophysiology [180, 181]. Re–LPS,
the minimal form of LPS required for bacterial growth
in vitro, interacted with DPPC and caused DPPC mono-
layers to disperse and fluidize, altering their surface ten-
sion reducing properties [182]. Whole LPS also exerted
this fluidizing effect on films in vitro, preventing lipid
packing when they were compressed [183] and also pre-
vented cholesterol packing in vitro [184].
LPS can also interact with SP–A and SP–D. In fact, SP–

A specifically recognizes LPS lipid A [185, 186]. SP–A and
SP–D play an important role in the innate immune re-
sponse to pathogen–associated molecular patterns
(PAMPs), and they can modulate the host response to LPS
challenge by altering host cytokine release [187–189] and
by scavenging LPS, minimizing LPS–mediated surfactant
clumping [183]. In addition, SP–A and SP–D also destabi-
lized the bacterial cell membrane [190].
Lipoid pneumonia is a rare condition characterized by

the accumulation of endogenous or exogenous lipids in
the alveoli and has been described as a precursor for
other respiratory conditions, including PAP [191]. Lipoid
pneumonia often presents with sudden onset of nonspe-
cific respiratory symptoms and may be diagnostically
confirmed by the demonstration of lipid–engorged mac-
rophages in BAL, sputum, or lung tissue. Treatment for
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this rare condition is ill–defined, but whole lung lavage
and corticosteroid administration have been described as
potential treatments for advanced or recurrent lipoid
pneumonia [192]. Endogenous lipoid pneumonia may
occur following damage to alveolar cells that causes re-
lease of lipids into the alveolar lumen [193]. The influx
of cellular lipids into the airspace and compensatory up-
take by AM activates an immune response that often
leads to the progression of pulmonary disease. Exogenous
lipoid pneumonia, on the other hand, has traditionally
been linked to the aspiration of oily substances; however,
this condition is now being linked to e–cigarette vaping,
which has an increasing incidence [194, 195]. In a case
study, vaping–associate lipoid pneumonia was associated
to lung accumulation of vegetable glycerin, a major e–
cigarette liquid component, causing dysregulation of AM
lipid metabolism [196]. Moreover, the dysregulation of en-
dogenous and exogenous alveolar lipid uptake by macro-
phages disrupts surfactant clearing and induces an
immune response.
A special example of alterations in pulmonary lipid

metabolism by an external hydrophobic agent is Amio-
darone, a highly effective anti–arrhythmic drug that has
potential serious side effects and toxicities, with pulmon-
ary toxicity incidence being around 7% [197]. Apoptosis
of alveolar T2C is a major contributor in amiodarone in-
duced lung injury. In a murine model of amiodarone
treatment, electron microscopy showed T2C hyperplasia
and extensive lung fibrosis. Surfactant phospholipids and
proteins accumulated intracellularly over time [134].
Using polarized light microscopy, Haller et al. showed
that amiodarone induced alterations in lamellar bodies,
leading to impaired pulmonary surfactant packing and
function [198]. High resolution subcellular imaging also
showed amiodarone accumulation in lysosomes of lung
macrophages [199]. Other mechanisms are immune–re-
lated and activation of the renin angiotensin system
[200].
Viral infections can alter a myriad of metabolic path-

ways in the host. In a recent untargeted metabolomic
study of serum from a cohort of adult subjects infected
with the influenza virus, 26 different host metabolites
showed differential alterations upon infection. The meta-
bolic pathways affected included FA biosynthesis and
oxidation, PL metabolism, steroid hormone metabolism,
and nucleotide and amino acid synthesis (Table 1).
These data point at the effects a pulmonary infection
can exert in circulating lipids [201].
Influenza infections course with inflammation and

NSAIDs are a common first line of treatment. The effi-
cacy of additional anti–inflammatory candidates is cur-
rently being tested for the treatment of influenza. PGE2
and its synthase PGES–1 are attractive targets for the
development of new drugs. In mice, one of the evaluated

compounds successfully decreased the expression of cy-
tokines and other pro–inflammatory genes and provided
improvement in infection resolution [202]. Protectin D1
(PD1) is a DHA–derived pro–resolving mediator synthe-
sized by the 12/15–LOX pathway that potently inhibits
viral replication by inhibition of RNA export from the
nucleus of infected cells. In mice, deletion of 12/15–
LOX increased viral replication and disease propagation
[203]. Indeed, 12/15–LOX and its metabolites were pro-
tective during inflammation resolution after influenza in-
fection [204].
The virulence of the influenza virus can be modulated

by interactions between the host lipids and the viral pro-
teins. After initial infection and proliferation within the
host cell, influenza viral particle assembly is a critical
step. Viral particle assembly is orchestrated through the
viral matrix protein M1, which must contact plasma
membrane lipids for effective viral packaging and re-
lease. The lipid composition of the inner and outer leaf-
lets of the plasma membrane was essential for influenza
virulence. Specifically, M1 bound phosphatidylserine
with high affinity and facilitated viral assembly [205].
The influenza protein M2 also takes advantage of chol-
esterol in the plasma membrane, which can bind the
amphipathic helices of M2 to stabilize the protein and
induce a conformational change. This conformational
change confers an increased ability of M2 to induce the
membrane curvature required for viral budding [206].
Thus, influenza increases its virulence through manipu-
lation of host alveolar lipids.
Influenza not only coopts host lipids to its advantage, it

also utilizes its own lipid packaging to enhance its viru-
lence. Efforts to profile the lipid composition of influenza
envelope have found a high degree of structural flexibility;
this flexibility, conferred by the pathogen’s lipid profile
was found to substantially protect the virus, and increase
puncturing capacity of target cells [207].
Tuberculosis (TB), a leading cause of death worldwide,

causes an estimated 1.2 million deaths and 10 million inci-
dent cases in 2018 according to the World Health
Organization (WHO) [208]. TB transmission occurs
through the inhalation of Mycobacterium tuberculosis
(Mtb)–containing aerosolized liquid droplets by the new
host [209]. One third of the world’s population is estimated
to harbor the latent Mtb pathogen, but reactivation of the
pathogen and development of active TB occurs only in ap-
proximately 5–10% of these individuals with latent TB, fre-
quently as a result of immunodepression.
The lipids present in the host environment are import-

ant factors contributing to Mtb pathogenesis. Mtb
H37Rv cultured in lipid–rich media showed increased
expression of 368 genes, many of which are involved in
conferring drug resistance and increasing the pathogen’s
longevity [210]. In fact, Mtb preferentially metabolizes
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host–derived lipids, namely triglycerides and cholesterol,
in order to perform at optimum virulence capacity. De-
fects in the bacterial catabolism pathways of these fuels
constrains Mtb development [211]. In addition, eicosa-
noids also modulate host responses to Mtb infection. In-
fected PGE2 receptor–deficient mice accumulate higher
pathogen loads than WT mice, suggesting that the host’s
PGE2 is protective against Mtb infection [212, 213]. In
contrast, Lipoxin A4 (LXA4) and other 5–lipoxygenase
products enhance Mtb propagation in the host [213, 214].
Interestingly, over 250 genes in the Mtb genome en-

code proteins that participate in lipid metabolism, repre-
senting a vast proportion of the pathogen’s genome, and
many of the lipids in these metabolic pathways are part
of the bacterial cell wall [215]. A study profiling the evo-
lution of Mtb strains comparing modern and ancestral
bacteria, showed that modern Mtb contains more apolar
cell–surface lipids, with decreased proportions of ex-
posed polar lipids [216]. The effect of these changes is
an enhanced capacity of the pathogen for aerosolized
transmission. The cell wall lipid phthiocerol dimycocero-
sates (PDIM) was one of the first virulence factors to be
identified in M. tuberculosis, and it is ubiquitously
expressed in patient isolates. PDIM–deficient H37Rv
mutants demonstrated significantly attenuated virulence
in guinea pigs [217]. Two Mtb cell wall lipids, diacylated
sulfoglycolipids and the phosphatidyl–myo–inositol
dimannosides are currently being used as antigens in
preclinical trials for a vaccine development for TB [218].
Altogether, these findings illustrate the important roles
that the host and viral lipids play in the development of
respiratory infection with various pathogens.
While this paper was under revision, an outbreak of a

new infectious respiratory illness, named COVID–19,
was declared Public Health emergency as it reached
pandemic levels. The knowledge on the biology of
COVID–19 is extremely limited at this moment [219].
The transmission seems to occur through droplets and
symptoms generally included a high fever, headache,
cough, fatigue, and respiratory distress that can quickly
evolve to pneumonia and ARDS. The virus responsible
for this new disease was named SARS–CoV–2, for its
genetic similarity to SARS–CoV, the cause of the severe
acute respiratory syndrome (SARS) outbreak first re-
ported in February of 2003. Studies of human lung
tissues from individuals with COVID–19 and SARS re-
ported similar cell tropism for the two viruses: alveolar
T1C, T2C and AM [220, 221]. Biopsied SARS and
COVID–19–infected lungs document diffuse alveolar
damage as a major hallmark of the diseases, as well as
gross organizational changes in the alveoli and intersti-
tial fibrosis by immunofluorescence [222, 223]. SARS
infects T2C and eventually induces their apoptosis,
spreading to adjacent alveoli, and it has been proposed

that SARS–CoV–2 follows a similar path [224]. COVID–
19–infected lung tissue shows T2C hyperplasia and ero-
sion of the T1C epithelial lining [222], and autopsied lungs
also confirm these findings, with clear T2C proliferation
and alveolar barrier break down [221]. At the moment,
there is no knowledge on the long term–effects of SARS–
CoV–2 infection on the T2C functions of surfactant
homeostasis and of alveolar repair.

Lipids during acute lung injury and acute
respiratory distress syndrome
Animal–derived surfactant therapy was first used clinically
in 1980 to treat 10 preterm infants with IRDS [66]. Since
then, a number of studies and randomized control trials
have deemed the use of animal–derived surfactants, most
commonly bovine– or porcine–derived, successful [65,
225–236]. The positive therapeutic effect of these surfac-
tants in the treatment of IRDS is unambiguous, but con-
cerns about the potential infectivity and antigenicity of
animal–derived surfactant, as well as production and cost
have encouraged the development of synthetic options,
which could potentially expand the therapeutic applications
to adult patients with ARDS.
Therapeutic surfactant formulations have evolved over

the past few decades to yield improved therapeutic benefit
to neonate patients. Early clinical trials using nebulized
synthetic DPPC for the treatment of IRDS showed nega-
tive results [237, 238], and these were attributed to limited
delivery of DPPC to the alveoli. Nearly 20 years later, a
multicenter trial successfully piloted the use of pumactant,
a synthetic surfactant preparation composed of a combin-
ation of DPPC and phosphatidylglycerol [239]. Since then,
additional synthetic surfactant preparations have been for-
mulated. Colfosceril palmitate was an FDA–approved pro-
tein–free surfactant that showed positive results in
randomized control trials [240]. However, a meta–analysis
comparing synthetic and animal–derived surfactants re-
ported an inferiority of synthetic surfactants owing to their
lack of SP–B and SP–C, and for this reason colfosceril
palmitate is no longer used [241].
Second–generation synthetic surfactants incorporated

molecules that mimic surfactant protein function. A
preparation containing recombinant SP–C showed mod-
erate symptomatic improvement in adults with ALI, but
did not improve survival [242]. Other synthetic prepara-
tions contain different compounds designed to mimic
SP–B activity, and have improved stability and resistance
to inactivation [243]. Lucinactant was FDA– approved in
2012 and contains an SP–B–like peptide. The efficacy of
these second–generation, protein–containing synthetic
surfactants were shown in randomized clinical trials to
be comparable to that of animal–derived surfactants for
the treatment of IRDS [244, 245]. Additional synthetic
surfactant preparations are currently being investigated
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and optimized for resisting the surfactant inhibitory con-
ditions in the alveolar microenviroment of the patient
with IRDS [246].
Indeed, decreased pulmonary compliance and in-

creased edema are major pathophysiological findings
also in ARDS, and decreased surfactant PL as well as in-
corporation of PL into polymerized fibrin contribute to
this pathophysiology (Table 1) [247]. BAL phosphatidyl-
glycerol was also decreased in ARDS with increased BAL
surface tension [69]. Experimental supplementation with
phosphatidylglycerol in a neonatal piglet ARDS model
reduced IL–6 and alveolar apoptosis, and preserved the
alveolar–capillary barrier, thus decreasing pulmonary
edema [248].
The role of sphingolipids in acute lung injury (ALI)

and ARDS is still unclear and controversial. S1P has
been shown to have protective effects against ALI, but
the downstream effects of SPK1 and SPK2 in inflamma-
tion and lung injury seem to be related to the type of
initial insult. SPK1−/− mice were more susceptible to
lipopolysaccharide (LPS)–induced lung injury than WT
mice, showing increased neutrophil infiltration and
endothelial leakage, as well as increased inflammatory
cell numbers in BAL [249]. However, Escherichia coli
lung infection resulted in enhanced progression of dis-
ease in SPK2 but not SPK1−/− mice, independently of
neutrophil recruitment and effector functions [250]. In
mice with S1PL inhibition or genetic deletion and subse-
quent increase in S1P levels, LPS challenge had low
efficiency at eliciting lung injury and inflammation.
Moreover, down–regulation of S1PL expression in hu-
man lung endothelial cells decreased LPS–induced
endothelial barrier disruption and IL–6 production, sug-
gesting that S1PL might be a potential therapeutic target
in ALI and ARDS [251]. Further studies are required to
evaluate these hypotheses.
The efficacy of aerosolized surfactant therapy has been

piloted in clinical trials for ARDS. In a randomized pro-
spective control trial piloting the use of exogenous surfac-
tant therapy to treat chronic bronchitis, aerosolized
surfactant therapy was found to improve subject pulmon-
ary function and improve sputum transport by respiratory
cilia [90]. The potential of surfactant for the treatment of
ARDS is still unclear.

Summary and conclusions
The lung parenchyma consists of multiple cell types with
specific structures and functions, conferring a remark-
able complexity in the study of the pathophysiology of
pulmonary disease (Fig. 2).
Alveolar surfactant is essential for respiratory function

and it is mostly composed of phospholipid, with minor but
very specific amounts of other lipids and surfactant pro-
teins. Qualitative and quantitative changes in the surfactant

lipids are involved in multiple adult pulmonary pathologies
(Table 1). COPD, exposure to pollution and smoke, and
the use of cigarettes result in detrimental changes of the
surfactant lipids, the surfactant–synthesizing T2C and the
surfactant–clearing alveolar macrophages. IPF can arise as
a result of prolonged damage to the T2C, and the cell–spe-
cific transcriptomic signature of this disease shows pro-
found alterations in intracellular lipid metabolism in T2C
and in macrophages. Not only are surfactant lipid metabolic
pathways impacted, but bioactive sphingolipids and prosta-
glandins also show mechanistic involvement in IPF models.
Alveolar lipids also partake in the pathophysiology of infec-
tious diseases and ARDS.
The current limitations on the study of pulmonary lipids

include the vast complexity that lipid metabolism can
quickly acquire. Mass spectrometry now allows sensitive
detection of specific lipid species, allowing for more de-
tailed analysis, and the new challenge is the interpretation
of such lipidomic data, taking into account that lipids are
often metabolites, and as such, they may not accumulate
and instead be in a state of flux. Another important limita-
tion is the cellular heterogeneity of the lung. Different cell
types may regulate lipid metabolism differently according
to their specific functions, despite cells interacting with
each other and residing in the same niche. Specific modu-
lation of metabolism in specific cell populations is a chal-
lenge yet unresolved. For analytical goals, techniques like
single cell sequencing allow transcriptomic assessment of
different cell populations, but for lipid biology the tech-
niques are restricted to whole tissue assessment, or cell–
separations by combinations of differential centrifugation
and surface marker–based selection.
Much work remains to be done to elucidate the details

of lung lipid metabolism and signaling with the ultimate
goal of developing new therapies, but this is a promising
field that will likely expand in the years to come.
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